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Top 5 Experimental Analysis 
Myths in AI

i. Results from 1 run shows you anything other than 
proof-of-concept

• It doesn’t 
ii. The single best value achieved in a set of runs tells you 

anything significant about the population distribution 
• No

iii. Using the same seed for your random number generator in 
both treatments controls for anything

• It doesn't
iv. The mean performance of your entire population is worth 

doing statistics on 
• You normally want best-of-run 

v. One system is obviously better than the other when looking 
at the data or graph - there is no need for a statistical analysis 

• If it is so obvious, then will be easy to show statistically 
• might as well do the stats 
• shows that you are objectively confident in your conclusion

Top 12 Statistics Myths in AI

1. My mean result being better than yours means my technique 
is superior to yours 

• In the best case you need to perform a T test to assert this claim

2. Reporting the mean value of a statistic is good enough
• You need some representative range

3. Reporting the mean and standard deviation of a statistic is 
good enough 

• Need number of runs

4. Your data are normally distributed 
• Not usually

Top 12 Statistics Myths in AI

5. The mean performance of the best-of-run individuals of your 
system is what matters 

• It’s usually the median you want

6. 10 runs is enough to show significant differences 
between groups 

• It can be, but the statistics required to show this are hairy

7. 95% confidence levels are generally sufficient 
• Try 99.9%

8. Drawing 95% confidence intervals around each sample mean 
on a graph implies that it’s a rare event if any of the true 
means fall outside the CIs 

• Nope; need Bonferroni correction

Top 12 Statistics Myths in AI

9. Reporting the results of several comparisons where each is made at a 
95% confidence level means that all conclusions are valid simultaneously 

• Nope; need Bonferroni correction for that too

10. 95% confidence intervals can be computed using the sample mean ± 1.96 
standard deviations of the mean 

• Nope; need the Student's T score given your degrees of freedom

11. An experimental setup where more than one parameter is varied can be 
treated like one where exactly one parameter varies 

• Need ANOVA, MANOVA or regression

12. One can infer trends from observed data beyond the data you’ve 
generated

• Generally, this would be a consequence of some model, and you probably 
haven’t supported said model with enough experimental data

Myth 1: Averages are Everything

• We might get unlucky with our data distribution – a simple 
comparison between two averages might not give the same 
result as the comparison between two distributions

• Consider the following samples of two distributions (blue 
and green), which are normally distributed and have the 
following exact parameters:

N = 100, 5s = 5, 10, 50-10

N = 100, 5s = 5, 10, 50+10

RepsStdDevMean
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Sampling From Two 
Normal Distributions

-75 0 75

1005-10

1005+10

RepsStdDevMean

9.7-10.7

Sampling From Two 
Normal Distributions

-75 0 75

10010-10

10010+10

RepsStdDevMean

10.5-9.7

Sampling From Two 
Normal Distributions

-75 0 75

10050-10

10050+10

RepsStdDevMean

7.9-2.5

Sampling From Two 
Normal Distributions

-75 0 75

55-10

55+10

RepsStdDevMean

7.9
-5.7

Sampling From Two 
Normal Distributions

-75 0 75

510-10

510+10

RepsStdDevMean

5.9
-6.2

Sampling From Two 
Normal Distributions

-75 0 75

550-10

550+10

RepsStdDevMean

19.1-5.4
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Probability Density Functions
• The greater the density of observed outcomes, the larger the density 

function's value
• Probability = integration (sum) of the density function between a 

range of values

D
ensity

What Are We Interested In?

• For most statistical analysis for AI the question is
• Is my new way better than the old way?
• Statistically this translates into a statement about the difference 

between means:  “Is the difference between ‘my mean’ and 
‘the old mean’ greater than zero?”

• However, to answer this question you must first be able 
to estimate the true mean of both distributions

• Of course the true mean will not be where the sample average is
• So what does the sample average tell us?

The Sample Average as a Sum 
of n Random Variables

• Let us consider the sample average of 10 points

• Another way of writing this is

• We can say that
• Where X1, X2, … are themselves 

separate identically-distributed random variables 
• So what we really need to know is the behavior of the sum of many 

identically distributed random variables

• This has been studied, producing a useful result known as 
the Central Limit Theorem:  the sum of many identically 
distributed random variables tends to a Gaussian
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Central Limit Theorem

• The sum of many independent, identically distributed (IID)
random variables approaches a Gaussian normal curve

• E.g.  Uniform distribution on [0, 1]:
One trial                                           Sum of two trials

Central Limit Theorem

• E.g.  Uniform distribution (continued):
Sum of five trials                             Sum of 25 trials
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Exponential Distribution
One trial                                       Sum of 2 trials

Sum of five trials                         Sum of 25 trials

Binomial Distribution (p = 0.9)
One trial                                       Sum of 5 trials

Sum of 25 trials                           Sum of 100 trials

Estimating the Mean:
Confidence Intervals Around the Average

05.0=α

The wider the cutoff values, the more likely that the true 
mean will fall within that range

95%

0 1.96-1.96

99%

0 2.58-2.58

99.9%

0 3.29-3.29

• Cutoff values are called z-scores
• α is the probability of obtaining 

values outside the cutoffs
• Since cutoffs are on both sides, 

probability of each side is α /2
• Confidence Level is 1 – α
• Use “– NORMSINV(α / 2)” to 

compute z-scores in Excel
• Use T-scores with small sample 

sizes:  “TINV(α, N - 1)”

01.0=α

001.0=α

Estimating the Mean:
Confidence Intervals Around the Average

• These cutoff values form a confidence interval so named because you are 
confident that the mean lies within this interval (for a given confidence level) 

• So for 95% coverage, the confidence interval for the sample mean would be

X = µX ±1.96σ X 

, we get:

n
s

X X
X 96.1±= µ

Using σ X ≅ sX

n
and XX µµ =

X

Estimating the Mean:
Confidence Intervals Around the Average

• Since we want to estimate µX , the true mean of the original 
distribution, we must rearrange the equation and solve for µX

µX = X ±1.96 sX

n

All formulations are equivalent

X −1.96 sX

n
≤ µX ≤ X +1.96 sX

n
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X XX

X 96.1,96.1µ

Error Bounds

Confidence Intervals

There is a 95% chance that the 
true mean of X will lie within 
the confidence interval

In other words there is only a 5% 
chance that the true mean lies 
outside the confidence interval 
formed around the sampled mean 

T-Test Step by Step

1. Compute the 2 averages X1 and X2

2. Compute standard deviations s1 and s2

3. Compute degrees of freedom: N1 + N2 - 2
4. Calculate T
5. Computes the area under the 

T distribution greater than the T value 
• This is the p-value
• Use TDIST(T, N - 1, 2) in Excel

• The final “2” means “two-sided”, which is the usual case
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When The CLT Fails You

• Everything we have done so far depends on the Central Limit Theorem 
holding

• But this is not always true
• In fact for AI it rarely holds

• Problems occur when
• …you have a non-zero probability of obtaining infinity

• Mean and standard deviation are infinite!
• …the sample average depends highly on a few scores

• When the mean of your distribution is not measuring what you want, consider using 
the median instead (rank-based statistics)

• AI alert!
• Many data in artificial intelligence are often highly skewed because some local 

optima in the search space are very unfit
• Example follows

When The CLT Fails You
• From a node layout problem where fitness is absolute error (minimization)

• Here are the PDFs of 2 AI parameter settings, named Broad and Narrow 
for convenience

• Here Broad’s mean is much worse than Narrow’s because of its 
extended tail, even though Broad often beats Narrow in practice!

• We don’t really care about the 8% of trials where Broad performs badly
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So what should we do?

• There are tests that use Ranks instead of actual values
• These are called Non-Parametric Tests 
• They measure how interspersed the samples from the 

two treatments are 
• If the result is “alternating” it is assumed that there is no 

effective difference

Non-Parametric Tests

• Ranks are uniformly distributed (think of percentiles – uniform on 
[0%, 100%])

• The sum of ranks and average of ranks will be approximately 
normally distributed because of the Central Limit Theorem, as 
long as we have 5 or more samples

• This result is independent of the particular distributions of the 2 treatments 
• So we can perform a T-Test on the ranks 

• 2 other techniques with similar results are commonly seen
• Wilcoxon’s Rank-Sum test
• Mann-Whitney U test

• All are nearly equivalent, and the test is often called the “Mann-
Whitney-Wilcoxon test” by statisticians

How To Rank the Data

• Augment each data point with a treatment identifier and 
an additional slot for its rank

• Sort the data sets together by value
• record the ranks of all values in their rank slot

• assign the average rank of tied values to each tied value

• Resort by the original order thus splitting the data sets back out 
• keep the combined ranking with each data point

• Apply your T test on the ranked values

0.27A

0.16A

0.91A

0.16A

0.16A

0.64A

0.99A

0.64A

0.91A

0.03A

0.64B

0.03B

0.03B

0.16B

0.01B

0.02B

0.27B

0.16B

0.08B

0.64B

Ranked Example

Two sets of Data
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0.64B

0.03B

0.03B

0.16B

0.01B

0.02B

0.27B

0.16B

0.08B

0.64B

0.27A

0.16A

0.91A

0.16A

0.16A

0.64A

0.99A

0.64A

0.91A

0.03A

Ranked Example

Combine the data into a single array

0.01B

0.02B

0.03B

0.03B

0.03A

0.08B

0.16B

0.16B

0.16A

0.16A

0.16A

0.27B

0.27A

0.64B

0.64B

0.64A

0.64A

0.91A

0.91A

0.99A

Ranked Example

Sort the combined data

200.01B

190.02B

180.03B

170.03B

160.03A

150.08B

140.16B

130.16B

120.16A

110.16A

100.16A

90.27B

80.27A

70.64B

60.64B

50.64A

40.64A

30.91A

20.91A

10.99A

Ranked Example

Give each data element 
its corresponding rank

ranks

200.01B

190.02B

180.03B

170.03B

160.03A

150.08B

140.16B

130.16B

120.16A

110.16A

100.16A

90.27B

80.27A

70.64B

60.64B

50.64A

40.64A

30.91A

20.91A

10.99A

Ranked Example

Identify ties

ranks

t5

t5

t5

t4

t4

t4

t4

t4

t3

t3

t2

t2

t2

t2

t1

t1

17t5

12t4

8.5t3

5.5t2

2.5t1

Average tied ranks
together

200.01B

190.02B

180.03B

170.03B

160.03A

150.08B

140.16B

130.16B

120.16A

110.16A

100.16A

90.27B

80.27A

70.64B

60.64B

50.64A

40.64A

30.91A

20.91A

10.99A

Ranked Example

Replace tied ranks 
with average tied ranks

ranks

t5

t5

t5

t4

t4

t4

t4

t4

t3

t3

t2

t2

t2

t2

t1

t1

17t5

12t4

8.5t3

5.5t2

2.5t1

Average tied ranks
together

200.01B

190.02B

170.03B

170.03B

170.03A

150.08B

120.16B

120.16B

120.16A

120.16A

120.16A

8.50.27B

8.50.27A

5.50.64B

5.50.64B

5.50.64A

5.50.64A

2.50.91A

2.50.91A

10.99A

Ranked Example

Replace tied ranks 
with average tied ranks

ranks

t5

t5

t5

t4

t4

t4

t4

t4

t3

t3

t2

t2

t2

t2

t1

t1

17t5

12t4

8.5t3

5.5t2

2.5t1

Average tied ranks
together



7

Ranked Example

Resort by treatment

ranks

200.01B

190.02B

170.03B

170.03B

150.08B

120.16B

120.16B

8.50.27B

5.50.64B

5.50.64B

170.03A

120.16A

120.16A

120.16A

8.50.27A

5.50.64A

5.50.64A

2.50.91A

2.50.91A

10.99A

Ranked Example

Perform T Test on Ranks

ranks

200.01B

190.02B

170.03B

170.03B

150.08B

120.16B

120.16B

8.50.27B

5.50.64B

5.50.64B

170.03A

120.16A

120.16A

120.16A

8.50.27A

5.50.64A

5.50.64A

2.50.91A

2.50.91A

10.99A

BrankArank

5.335.28stdDev

13.157.85avg

Non Parm. T Test

0.038p-value

2.23

2.37

7.50

n=10

s = sA
2 + sB

2

sT = s / n
avgA − avgB / sT T-score

A Non-Parametric ‘Mean’: 
The Median

• Average of a data set that is not normally distributed 
produces a value that behaves non-intuitively
• Especially if the probability distribution is skewed

• Large values in ‘tail’ can dominate
• Average tends to reflect the typical value of the “worst” data

not the typical value of the data in general

• Instead use the Median
• 50th percentile
• Counting from 1, it is the value in the 

• If n is even, (n+1)/2 will be between 2 positions, 

average the values at that position

n +1
2

 position

A Confidence Interval Around 
the Median: Thompson-Savur

• Find the b the binomial value that has a cumulative upper tail 
probability of α/2

• The binomial distribution is used instead of the normal distribution 
because median based on a two sided sign test

• The lower percentile l =

• The upper percentile u = 1 – l

• Confidence Interval is [valuel,valueu]
• i.e. 
• With a confidence level of 

b
n −1

valuel ≤ median ≤ valueu

1−α

A Confidence Interval Around 
the Median: Thompson-Savur

• In Excel: 
• To calculate b use
CRITBINOM(n,1/2,α/2)

• to compute the valueu use the function 
PERCENTILE(dataArray, u)

• to compute the valuel use the function 
PERCENTILE(dataArray, l)

A Confidence Interval 
Alternative to the Ranked T Test

• Find the median confidence interval for the two data 
sets

• If the confidence intervals do not overlap
• Data sets from different distributions
• With a confidence level of 1 - α where α is the upper tail 

probability used in computing b
• Advantages: 

• Gives better understanding of system 
• see median values with error bounds
• easy to draw on a graph

• Disadvantage:
• Not as sensitive as the ranked T test



8

Repetitions

• What is the number of repetitions needed to see 
if there is a difference between two means or 
between two medians?
• Depends on the underlying distributions

• But underlying distributions are unknown

• Rule of thumb
• Perform a minimum of 30 repetitions for each system
• Performing 50 to 100 repetitions is usually better

More Than 2 Treatments

• Preceeding stats to be used for simple experiment designs
• More sophisticated stats needs to be done if:

• Comparing multiple systems instead of just 2 treatments
• E.g. comparing the effect on a Genetic Algorithm of using 

no mutation, low, medium and high levels of mutation

• We say there are 4 levels of the mutation variable

• Need               possible comparisons to test all pairs of treatments

• Called a ‘multi-level’ analysis

4
2

 

 
 

 

 
 = 6

Multiple Levels: 
Post-hoc Analysis

• For 4 levels of mutation there are 6 comparisons possible
• Each one of the comparison holds at a 95% C.L. independent 

of the other comparisons
• If all comparisons are to hold at once the odds are 

0.95 x 0.95 x 0.95 x … x 0.95 = (0.95)6 = 0.735
• So in practice we only have 73.5% C.L

• Wrong 1/4 of the time

• For 7 levels of mutation there are 21 comparisons 
possible
• C.L. =  (0.95)21 = 0.341

• Chances are better than half that at least one of the decisions is wrong!

The Bonferroni Corrections 
for Tests

• To correct, choose a smaller α

• Where m is the number of comparisons
• So for 95% CL use α = 0.025/6 = 0.004167
• For a Z test the critical value changes from 1.96 to 2.64

• Called a Bonferroni post-hoc correction
• There are other post-hoc techniques such as Tukey and Scheffé that can be 

more powerful than Bonferroni

• You should apply the Bonferroni correction:
• To T-tests (T tests and ranked T Tests)
• To Confidence Intervals and Error Bounds
• Whenever you mean "all the significant results we obtained hold at once"

′ α = α
m

The Bonferroni Corrections 
for Experiments

• The Bonferroni Correction is more widely applicable than 
just for multi-level comparisons

• We really need to control for the dilution of the confidence 
levels throughout the study, whether or not the CLs are 
applied to analyses of independent 'phenomena'

• We must divide the α used for each CL test by the total 
number of CL tests in the study

• To apply the Bonferroni correction to p-values multiply the 
p-values by the number of CL tests performed

• “Probabilities” bigger than 1 means “not significant”

The Bonferroni Correction 
for Experiments

• Example:
• A robot dog has been created

• Genetic Programming is used to control the ear wiggles of the robot
• a Genetic Algorithm is used to optimize its tail wagging ability

• A study is being done to improve both the ears and the tail 
independently, and we want to be 95% confident in our over 
all tests

• For the ears the GP is tested with 3 different sets of terminal nodes
• For the tail the GA is tested with 4 different fitness functions

• There are

• Consequently the α used for any CL should be α = 0.025 / 9 = 0.0028
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 = 3+ 6 = 9 total CL inferences used in the study
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Multiple Factors

• Most of the time, there are many different properties 
we are interested in studying
• e.g. We may be trying out various kinds of crossovers, with 

and without mutation, under different selection pressures
• Each of the above parameters has multiple levels
• This is called a multiple factor analysis 

• with each factor having multiple levels

• Use Analysis of Variance or General Linear Models to 
analyze

• See text books on ANOVA and GLMs

Multiple Factors: 
Factorial Design

• When dealing with multiple factors with multiple levels
• Important that all combinations of factor levels are tried
• A given combination of factor levels is called a treatment
• If you want accurate information about each possible 

interaction, each treatment should be repeated at least 30 
times 

• If you interested largely in main effects, 10 repetitions is often fine, if 
you have enough levels

Multiple Factors: 
Factorial Design

E.g. if we have 2 EC systems, new and standard (New and Std)
and we want to see their behavior under 

• crossover and no crossover (x and x)
• 3 different selection pressures (p1, p2 and p3)

p3p2p1p3p2p1p3p2p1p3p2p1P

xxxxxxxxxxxxX

StdStdStdStdStdStdNewNewNewNewNewNewS

t12t11t10t9t8t7t6t5t4t3t2t1

Multiple Factors: 
Factorial Design

• If we are performing 50 reps per treatment
• In previous example we have

S x X x P x 50 = 2 x 2 x 3 x 50 = 12 x 50 = 600 experiments 
to perform

• The number of experiments goes up as the product of 
the number of levels in each factor
• This is exponential in the number of factors
• Consequently, carefully choose the factors and factor levels 

that you study in your experiments
• Minimize what factors you vary 

(focus your experiments on the relevant factors)


